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Abstract—The correct and timely completion of the sensing and
action loop is of utmost importance in safety critical autonomous
systems. Crucial to the performance of this feedback control
loop are the computation time and accuracy of the estimator
which produces state estimates used by the controller. These
state estimators often use computationally expensive perception
algorithms like visual feature tracking. With on-board computers
on autonomous robots being computationally limited, the com-
putation time of such an estimation algorithm can at times be
high enough to result in poor control performance. We develop
a framework for co-design of anytime estimation and robust
control algorithms, taking into account computation delays and
estimation inaccuracies. This is achieved by constructing an any-
time estimator from an off-the-shelf perception-based estimation
algorithm and obtaining a trade-off curve for its computation
time versus estimation error. This is used in the design of a
robust predictive control algorithm that at run-time decides a
contract, or operation mode, for the estimator in addition to
controlling the dynamical system to meet its control objectives
at a reduced computation energy cost. This co-design provides
a mechanism through which the controller can use the trade-off
curve to reduce estimation delay at the cost of higher inaccuracy,
while guaranteeing satisfaction of control objectives. Experiments
on a hexrotor platform running a visual-based algorithm for
state estimation show how our method results in up to a 10%
improvement in control performance while simultaneously saving
5-6% in computation energy as compared to a method that does
not leverage the co-design.

I. INTRODUCTION

The real-time control of many autonomous robots, e.g. self-
driving cars and Unmanned Aerial Systems (UASs), usually
includes closed loops between the controller that drives the
actuation, and the estimator that computes state estimates
which are used by the controller. Of particular importance in
this traditional feedback control architecture are: a) the delay
in the control action due to the time taken by the estimator for
computing the state estimate and, b) the inaccuracy in the state
estimate. Either of these factors can result in control actions
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Fig. 1. Contract-driven controller and estimator.

that can drive the system into an unsafe state that it should
not reach, e.g. a no-fly zone.

In most conventional feedback control designs, controllers
are tasked with realizing the functional goals of the system
under simplistic assumptions on the performance of the es-
timator, in particular, perfect state estimates and negligible
computation time. This design principle based on separation of
concerns simplifies the control design process but often does
not accurately reflect real implementations. On the other hand,
most perception-based state estimation algorithms [1], [2] do
not take into account how their output will be used to close the
control loop. More specifically, an estimator will more often
than not run to completion: i.e., its termination criteria are
designed to provide the best quality output (estimate). This can
result in large delays in the control action, leading to degraded
control performance. It can also result in the computation
platform consuming a significant amount of energy, reducing
the amount of time the system can operate on a full charge.
This is especially of concern in mobile robotic systems like
autonomous drones and cars that operate on batteries with
limited capacity.

In this work we focus on these problems, showing that when
the real-time requirements on the closed-loop system become
more demanding, this disconnect between the estimator and
controller can lead to poor system performance. The following
example shows how this problem can manifest in even simple
settings.

Example 1: To illustrate the impact of estimation delay δ
and state estimation error ε on control performance 1, we show
a simple PID tracker controlling the motion of a point mass in
the (x, y) plane. The position of the point mass must follow
a reference constant trajectory, whose x dimension is shown

1In this paper we judge the control performance by a cost function that
accumulates the tracking error and control effort over time, e.g. see (8). In
general, the lower the cost, the better the control performance.



Fig. 2. Effect of delay, error values on control performance of a PID tracker.

in Fig. 2 (the same plot can be obtained for the y position).
We simulate two cases of estimation (and therefore actuation)
delay and error, where a larger delay value δ implies a smaller
estimation error ε. As can be noted in Fig. 2, the effect of delay
can be non-negligible. In this example, it can be seen that the
increased delay causes the tracking performance to worsen.
Running an estimation task with a fixed smaller delay but
larger estimation error does not necessarily solve the problem
of degraded performance, as can be seen in Fig. 2. Therefore,
there is a need to rigorously quantify the trade-off between
computation time and estimation error, then exploit that trade-
off to achieve the best control performance under the problem
constraints. Rather than always running the estimation task to
completion, it is useful to have several delay/error run-time
modes for the estimator. These can then be used at run-time
to satisfy the control objectives. �

The goal of this paper is to develop a rigorous framework
for the co-design of the controller and estimation algorithms.
Here, the estimator has a range of computation time/estimate
quality operating modes, and in order to best maintain control
performance and reduce energy consumption, the controller
at run-time selects one of these modes for the estimator to
operate in. This is motivated by the following observations:

1) The traditional engineering approach to account for the
estimator’s run-time is to gauge the Worst-Case Execution
Time (WCET) [3] of the estimation task, and design the
system to meet deadlines under the WCET conditions. In
practice however, the actual execution time of perception-
based estimators can be much less than the WCET and de-
pends on the actual data being processed. Hence, considering
the WCET can lead to a conservative design of the system.
Additionally, the classical timing analysis alone does not
guarantee functional correctness of the closed-loop system
under control.

2) Moreover, in the context of closed loop control, we do not
always require the best quality state estimate: more often than
not, a lower quality estimate, computed using lesser energy
and time, is acceptable to achieve the control objectives.

3) In the case where obtaining a better quality state estimate
requires longer computation time, it can be detrimental to the
control performance to require a high quality state estimate
all the time. For example, when the on-board computer is
overloaded, there may be a need to spend less time computing

a state estimate so that not only the control action has
less delay, but also so that other processes can access the
computation resource as scheduled.

In this paper, we develop the observations above into a
co-design framework for real-time control systems, where the
controller and estimator are interfaced via contracts. A con-
tract is an assurance requested by the controller, and provided
by the estimator, that the latter can give an estimate with a
certain accuracy ε, and within a predefined time deadline δ.
The computation time given to the estimator, as well as the
quality of the state estimate define the contract. This can be
interpreted as turning the estimator into a discretized version
of an anytime algorithm [4] where its computation can be
interrupted at runtime to get a state estimate, usually with a
trade-off between the computation time given to the algorithm
and the quality of output that it returns. Through this notion
of contracts, we show how the controller can vary the compu-
tation time of the estimation algorithm to maintain control
performance and to reduce energy consumption. The work
presented here is focused on estimation algorithms that rely on
computationally intensive Computer Vision (CV) algorithms in
order to get a state estimate of a dynamical system, e.g. those
in autonomous robot navigation with visual (camera, Lidar)
sensors. We refer to these as perception-based estimators.
Through experiments, we show that the computation time of
such algorithms can be significant (and much greater than that
of the control algorithm), resulting in an adverse impact on the
closed loop control performance.

The architecture for the co-design framework proposed in
this work is shown in Fig. 1. It resembles the conventional
closed loop control architecture involving the estimator, the
controller, and the system being controlled, but also incorpo-
rates the (delay, error) contract as an interface between the
controller and the estimation algorithm.

Summary of contributions. In this paper, we build upon
our results from [5] and present a framework for the co-design
of control and estimation algorithms for the real-time control
of dynamical systems. This approach consists of:
• a well-defined interface between control and estimation,

in the form of operating modes, or contracts, on the
accuracy and computation time of the estimator (Section
III),

• characterizing the estimator accuracy as either determin-
istic (worst-case) or stochastic through offline profiling
of the perception-based estimator (Section VII),

• a predictive control algorithm that can change the operat-
ing mode of the estimator at run-time to achieve control
objectives at a lower energy cost (Section IV), while
providing guarantees on satisfaction of constraints for
both deterministic (Section V) and probabilistic (Section
VI) characterizations of the estimation error, and,

• a straightforward, low-touch and low-effort approach to
design a contract-driven estimation algorithm starting
from an off-the-shelf, run-to-completion version of it
(Section VII).

• We demonstrate our method on an autonomous flying
robot (shown in Fig. 7) and show its performance and
energy gains over a classical controller (Section VIII).

Compared to our previous work [5], which only allows for



characterizing the contracts in terms of worst case estimation
error, in this work we extend the framework to also allow
for a probabilistic representation for estimation error. We also
provide guarantees on satisfaction of constraints and recursive
feasibility of the new control predictive algorithm resulting
from this probabilistic setup. In addition, we also extend the
experimental setup and incorporate a real-time implementation
of the new control algorithm and evaluate our approaches with
two sets of new experiments on a hex-rotor autonomous robot.

II. RELATED WORK

Algorithms that can be interrupted at any point at run-
time and still return an acceptable solution are called Anytime
Algorithms [4]. Such algorithms generally return solutions
with improving quality of output the longer they run for. A
subset of these are Contract Algorithms [6] which can be
interrupted only at a finite number of pre-agreed-upon times.
In this paper we design a Contract-driven perception-based
state estimator, but significantly expand the notion of a contract
to now include the quality of the solution (estimation error in
our case) as well as the computation time.

Anytime algorithms have found particular importance in the
field of graph search [7], evaluation of belief networks [8] and
GPU architectures [9], [10]. With autonomous systems gaining
popularity, computationally overloaded systems with real-time
requirements are becoming the norm. This has generated
interest in the development of anytime algorithms in the field
of control theory, with Quevedo and Gupta [11], Bhattacharya
and Balas [12], and Fontanelli et al. [13] exploring this line
of research. Anytime algorithms have also found widespread
use in the field of motion planning [14]–[17].

The work presented in this paper contrasts considerably
with these efforts as the assumption of anytime computation
is not on the controller or planning side but on the perception-
based state estimation component of the feedback control
loop. The loop is closed by the control algorithm presented
here that decides the contract for the anytime state estimator
at run-time. Also differing from the works discussed above,
which require instantaneous and perfect full state access for
the controller, our control algorithm takes into account the
computation time and the estimation error of the perception-
based estimators that are common in autonomous systems. The
recent work of Falanga et al. [18] also tackles the problem of
co-designing the perception and the control, but does so as a
joint optimization that takes into account both the perception
and the control. Our work differs from this significantly as we
introduce the notion of contracts to decouple the perception-
based estimator’s performance and the control optimization.
Our method also explicitly incorporates the timing and the
estimation performance of the perception-based estimator in
the control design, and can be used for the off-the-shelf
perception-based estimators (e.g. section VII-C). While the
control algorithms developed in this paper are limited to Linear
Time-Invariant (LTI) systems, recent work in robust predictive
control for non-linear systems that can be feedback linearized
[19] suggests that a framework similar to ours can also be
applied to such non-linear systems. This is however beyond
the scope of this paper and is left for future exploration.

In the domain of real-time systems, Worst Case Analysis,
along with Logical Execution Time semantics are used in

[20] to imbue a controller with information of the timing
characteristics of the closed loop implementation. On the
other hand, our approach involves profiling the estimation
algorithm in a direct manner to get timing and estimation error
characteristics. While [20] involves formally verifying a given
controller, we design a control algorithm that is correct by
construction and takes advantage of delay/accuracy trade-offs
in real-time. In the context of autonomous multi-rotor UAVs,
the effect of increasing the computation time of task on the
overall performance of the system has been analyzed in [21] by
using a resource allocation algorithm similar to QRAM [22].
Our approach contrasts with this as we focus on the execution
time of a particular task, the perception-based state estimator,
which directly impacts the closed loop control performance.
In addition to this, we also formulate a controller that provides
mathematical guarantees on the system’s performance.

Finally, in the area of computer architecture, approximate
computing approaches [23]–[25] have been explored to get
savings in time or energy through performing a computation
in an approximate manner, rather than precisely. While any-
time algorithms and approximate computing have a common
high-level goal, approximate computing methods are run-to-
completion and lack a feedback mechanism to permit com-
putation and resources to be balanced dynamically. Also, the
time and energy scale that our approach deals with are much
greater than those which concern approximate computing.

III. CO-DESIGN OF ESTIMATION AND CONTROL

Conventional closed loop control systems are generally
designed in a manner where the controller is incognizant of the
implementation details of the state estimation module, while
the estimation module is designed independent of the require-
ments of the controller. For example, a feedback controller,
that gets state estimates from a camera based visual odometry
algorithm, might not be designed to take into account the non-
negligible time taken to process the video frames to get a state
estimate. We refer to this computation time as the estimation
delay. On the other hand, the design of most perception-based
estimators does not take into account the varying real-time
constraints that the controlled closed-loop system must satisfy.
Also of importance, especially in autonomous systems de-
ployed in the field, is the power consumed by the computation
platform which can have a significant impact on the duration
the system can operate between charging.

Taking these factors into account, we propose the co-design
of estimation and control to improve the closed loop perfor-
mance of real-time control on systems with computationally
and power limited platforms. This is done through a contract-
driven framework for both estimator and controller in which
the controller asks for a state estimate within a certain deadline
δ seconds, with an associated bound on the inaccuracy of the
estimation. This inaccuracy can either be in the form of a
hard bound ε, e.g. an infinite-norm bound on the estimation
error vector, or have a probabilistic characterization Σ, e.g.
the covariance of the estimation error vector, depending on
the application. For the sake of simplicity, we use ε for the
characterization of the estimation error in the following text.

In our framework, the tuple (δ, ε) forms the contract be-
tween controller and estimator. The estimator is tasked with
providing a state estimate that respects the contract. Aware of
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Fig. 3. Contract-driven estimator and controller. With knowledge of the
estimator’s performance through offline profiling, the controller both actuates
the dynamical system and sets contracts for the estimator at run-time in order
to maximize control performance while guaranteeing that constraints on the
system are always satisfied.

these contracts, the controller can set the appropriate contract
in a time varying manner to adapt the closed-loop system
performance in real-time to take into account the control
requirements of the physical system. For example, it can
decide when an estimate is needed fast (but usually with
higher error), and when a more accurate estimate is needed
(but with greater delay). Note, the (δ, ε) contract can also be
thought of as setting an operating mode for the perception-
based estimator. A high-level view of this setup is shown in
Fig. 1.

In order to make sure that the contracts are such that the
estimator can indeed fulfill them, the estimator is profiled off-
line. To do this, the estimator’s internal parameters are varied,
and for each parameter setting, it is run on a profiling data set
(with a known ground-truth baseline). This results in a set of
(δ, ε) values, each one corresponding to a particular setting of
the parameters. These values can be plotted on a curve, which
we call the error-delay curve made up of discrete points, (δ, ε),
Examples of such a curve are shown in Figs. 6 and 8. Section
VII provides the detailed procedure for obtaining this curve
for a perception-based estimator.

During run-time execution, upon receiving a (δ, ε) contract
request from the controller, the estimator can adapt its pa-
rameter settings to fulfil the contract, i.e. to provide a state
estimate within the requested deadline δ that also respects the
requested error bound ε.

The controller, in the co-design framework, is designed with
the awareness of the error-delay curve of the estimation algo-
rithm, and requests contracts from that curve. The error-delay
curve, thus constitutes the interface between the controller and
state estimator. The controller leverages the flexible nature of
the estimation algorithm to maximize control performance.

The closed loop architecture in a system with co-design
of the estimator and controller is shown in Fig. 3. In this

co-designed system, the controller can make the estimation
algorithm switch to lower or higher time (and/or energy)
consuming modes based on the control objective at the current
time step. The main components of the co-design architecture
presented in this paper are: a) a contract perception-based
estimator, b) a robust control algorithm that computes an input
to be sent to the physical system being controlled as well as
the contract for the estimator, and c) the interface between
them. More details are in the following sections.

IV. CONTROL WITH CONTRACT-DRIVEN ESTIMATION

In this section, we formalize how the control algorithm
utilizes the error-delay curve of the estimator to optimize
control performance while minimizing the power consumed
by the computations for the perception-based estimator.

A. System Model

In order to model the co-design process, consider the closed-
loop control of an autonomous hex-rotor robot (more details in
VIII), shown in Fig. 7. The state x of the hexrotor consists of
its 3D position and 3D velocity, while the input u to the robot
consists of the desired pitch and roll angles, and the desired
thrust. The hexrotor’s task is to fly a pre-defined trajectory
given by xref , where xref (t) gives the desired position at
each time t. The dynamics of the hexrotor, relating the time-
evolution of its state to the current state and input, can be
linearized around hover and approximated by the following
Linear Time-Invariant (LTI) ODE:

ẋ(t) = Acx(t) +Bcu(t) + wc(t) (1)

Here, the state vector x ∈ Rn is constrained to be within set
X ⊂ Rn, the control input u ∈ Rm is constrained within set
U ⊂ Rm, and wc ∈ Rn is the process noise assumed to lie in
a (bounded) set Wc ⊂ Rn. Ac ∈ Rn×n and Bc ∈ Rn×m are
matrices. LTI ODEs can model a wide range of systems, and
our results apply to arbitrary LTI systems of the form given
in (1) with compact and convex constraint sets X,U and Wc.
The sets X and U are determined by the control designer or by
physical constraints on the system. For example, X captures
limits on the state to define the region which the hexrotor can
fly and the velocity limits on it. The set U restricts the inputs
to values that can be supported by the rotors, as well as within
which the linearized system provides a good approximation to
the true nonlinear dynamics.

B. Time-Triggered Sensing and Actuation

For feedback control of the hexrotor, the controller needs
to be aware of the hexrotor’s current position and speed, i.e.
requires an estimate of its current state x. This is done via
a perception-based estimator, that processes video frames (at
a fixed rate) obtained through a downward facing camera
mounted on the hexrotor. The estimator detects and tracks
features across frames, and deduces its own position through
the relative motion of these features.

A new frame is captured by the camera every T > 0
seconds, which results in periodic measurements at instants
ts,k = kT , where k ∈ N. This measurement is used by the
estimator to compute the state estimate x̂k := x̂(ts,k) with
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the desired accuracy εk determined by the contract set by the
controller in the previous time step. The controller then acts on
this state estimate to compute the control input uk as well as
decide on the perception-based estimator’s delay and accuracy
contract (δk+1, εk+1) for the next time step. The control is
then applied to the physical system according to (1) at instant
ta,k = ts,k + δk + τk, where τk is the time it takes to compute
the input. See Fig. 4 for the timing diagram of this process.

The controller has access to the delay-error curve, or oper-
ating modes ∆ of the estimator, and at each time step selects
contracts from that curve. This curve is obtained offline as
explained in Section III, and illustrated in Section VII. Note
that at each step k ≥ 0, the estimation accuracy εk, and hence
the delay δk are already decided in the previous time step and
known to the controller. For the very first step k = 0, the
initial estimation mode δ0, ε0, as well as the the initial control
input u−1 are chosen by the designer.

C. Control Performance

The controller has a goal that is twofold: it needs to ensure
that the reference trajectory is tracked as closely as possible,
and that the computation energy consumed to do so is mini-
mized. To capture this, we define two (stage) cost functions:
first, `(x, u) = (x − xref )TQ(x − xref ) + uTRu defines a
weighted sum of the tracking error (first summand) and the
input power (second summand). Here, Q and R are positive
semidefinite and positive definite matrices respectively. Sec-
ond, π(δ) captures the average power consumed to perform
a perception-based estimation computation duration δ. This
power information is collected offline during the estimator
profiling phase.

The total cost function for the controller to minimize is J =∑M
k=0 (`(xk, uk) + απ(δk)), where M ≥ 0 is the duration of

the system’s operation.

D. Discretized Dynamics

Due to the time-triggered sensing and actuation of the
system (see Sec. IV-B), from time ts,k to ta,k, the previous
control input uk−1 is still being applied. Then at ta,k the new
control input uk is computed and applied by the controller (see
Fig. 4). For the sake of simplicity, we assume the computation
time for the controller (τ ) is small and constant, and so
lump it with the time for the estimator (δ). This is justified
experimentally for our problem (in Sec.VIII) where the time
for the controller is negligible compared to the time taken by
the estimation algorithm. The discrete time dynamics for this
setup, with a periodic sensing time of T , are given by

xk+1 = Axk +B1(δk)uk−1 +B2(δk)uk + wk, k ≥ 0 (2)

in which

A = eAcT , wk =
∫ T

0
eAc(T−t)wc(ts,k + t)dt

B1(δ)=
∫ δ

0
eAc(T−t)Bcdt, B2(δ)=

∫ T
δ

eAc(T−t)Bcdt.

Here, wk is the process noise accumulated during the interval.
It is constrained to lie in a compact convex set W since
wc(t) lies in the compact convex set Wc and T is finite. As
explained above, both the current control uk and the previous
control uk−1 appear in (2). In addition, the input matrices
B1(δk) and B2(δk) depend on the delay δk. The estimation
accuracy εk, indirectly affects the dynamics via the control
input, which is computed using the state estimate x̂k. These
discrete time dynamics therefore show how the operation mode
of the estimator (δ, ε) affects the dynamics of the system.

V. ROBUST MODEL PREDICTIVE CONTROL SOLUTION

In this section we give an overview of the Robust Adaptive
Model Predictive Controller (RAMPC) that we use in the
contract-driven setup of Fig. 3. Here, we consider the esti-
mation errors to be bounded, and use these worst-case bounds
in the controller formulation. The mathematical details and
derivations are available in the online technical report [26].
Experiments confirm that the following controller can be run
in real-time, and its computation uses a negligible amount of
time relative to the estimation delay.

A. Solution overview

Recall the operation of the contract-driven control and
estimation framework as presented in Section III and Fig. 3.
First, the estimator is profiled offline to obtain its delay-
error curve, which we denote by ∆. The curve ∆ represents
a finite number of (δ, ε) contracts that the estimator can
satisfy. At every time step k, the controller receives a state
estimate x̂k and uses it to compute the control input uk
to be applied to the physical system at time ta,k and the
contract (δk+1, εk+1) ∈ ∆ that will be requested from the
estimator at the next step. At k + 1, the estimator provides
an estimate with error at most εk+1 and within delay δk+1.
Finally, recall that J =

∑M
k=0 (`(xk, uk) + απ(δk)) combines

tracking error and input power in the ` terms, and estimation
power consumption in the π terms. The scalar α is a design
parameter that quantifies the importance of power consumption
to the overall performance of the system and is set empirically
by the user.

The contract-driven controller’s task is to find a sequence
of inputs uk ∈ U and of contracts (δk, εk) ∈ ∆ such that
the cost J is minimized, and the state xk is always in the
set X . The challenge in finding the control inputs is that the
controller does not have access to the real state xk, but only
to an estimate x̂k. The norm of the error ek = x̂k − xk is
bounded by the contractual εk, which varies at each time step.

Let us fix the prediction horizon N ≥ 1. Assume that the
current contract (under which the current estimate x̂k was
obtained) is (δk, εk), and that the previously applied input is
uk−1. To compute the new input value uk and next contract
(δk+1, εk+1), the proposed Robust Adaptive Model Predic-



tive Controller (RAMPC) seeks to solve the following opti-
mization problem which we denote by P∆(x̂k, δk, εk, uk−1):

J∗[0 :N ] = min
u,x,δ,ε

∑N
j=0 (`(xk+j , uk+j) + απ(δk)) (3)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 =Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

[xk+j+1, uk+j ]
′ ∈ X × U

Here, RAMPC needs to find the optimal length-N input
sequence u∗ = (u∗k, . . . , u

∗
k+N ) ∈ UN , corresponding state

sequence x = (xk, . . . , xk+N ) ∈ XN , delay sequence δ =
(δk, . . . , δk+N ) and error sequence ε = (εk, . . . , εk+N ) such
that (δk, εk) ∈ ∆, which minimize the N -step cost J [0 : N ].
The matrices that make up the system dynamics are defined in
Section IV-D. As in regular MPC [27], once a solution u∗ is
found, only the first input value u∗k is applied to the physical
system, thus yielding the next state xk+1 as per (2). At the
next time step k + 1, RAMPC sets up the new optimization
P∆(x̂k+1, δk+1, εk+1, uk+1−1) and solves it again.

To make this problem tractable, we first assume that
the mode is fixed throughout the N -step horizon, i.e.
(δk+j , εk+j) = (δ, ε) for all 1 ≤ j ≤ N . Thus for every value
(δ, ε) in ∆, we can setup a different problem (3) and solve it.
Let J∗(δ,ε) be the corresponding optimum. The solution with
the smallest objective function value yields the input value u∗k
to be applied and the next contract (δ∗, ε∗).

Because RAMPC only has access to the state estimate, we
extend the RMPC approach in [28], [29]. Namely, the problem
is solved for the nominal dynamics which assume zero process
and observation noise (wk+j = 0) and zero estimation error
(x̂k+j = xk+j) over the prediction horizon. Let x be the state
of the system under nominal conditions. To compensate for
the use of nominal dynamics, RMPC replaces the constraint
(xk+j , uk−1+j) ∈ X × U := Z by (xk+j , uk+j) ∈ Zj(εk, ε),
where Zj(εk, ε) ⊂ Z is Z ‘shrunk’ by an amount correspond-
ing to ε, as explained in the technical report [26]. Intuitively,
by forcing (xk+j , uk−1+j) to lie in the reduced set Zj(εk, ε),
the bounded estimation error and process noise are guaranteed
not to cause the true state and input to exit the constraint sets
X and U . The tractable optimization for a given (δ, ε), denoted
by P(δ,ε)(x̂k, δk, εk, uk−1), is then

J∗(δ,ε) = min
u,x

∑N
j=0 (`(xk+j , uk+j) + απ(δ)) (4)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δ)uk+j−1 +B2(δ)uk+j

(xk+j , uk+j) ∈ Zj(εk, ε)

Algorithm 1 summarizes the RAMPC algorithm.
We state the following result (proof in technical report [26]):
Theorem 5.1: If at the initial time step there exists a contract

value (δ, ε) ∈ ∆, an initial state estimate x̂0 ∈ X , and an input
value u−1 ∈ U , such that P(δ,ε)(x̂0, δ0, ε0, u0−1) is feasible
then the system (2) controlled by Alg. 1 and subjected to
disturbances constrained by wk ∈ W robustly satisfies the
state constraint x ∈ X and the control input constraint u ∈ U ,
and all subsequent iterations of the algorithm are feasible.

Algorithm 1 Robust Adaptive MPC algorithm with Anytime
Estimation.

1: (δ0, ε0) and u−1 specified by designer
2: Apply u−1

3: for k = 0, 1, . . . ,M do
4: Estimate x̂k with guarantee (δk, εk)
5: for each (δ, ε) ∈ ∆ do
6: (u∗k, J

∗
(δ,ε))← Solve P(δ,ε)(x̂k, δk, εk, uk−1)

7: end for
8: (δ∗, ε∗, u∗k)← argmin(δ,ε)J

∗
(δ,ε)

9: Apply control input uk = u∗k and estimation mode
(δk+1, εk+1) = (δ∗, ε∗)

10: end for

VI. STOCHASTIC MODEL PREDICTIVE CONTROL
SOLUTION

The control algorithm developed in section V assumes that
the state-estimation error e lies in a bounded set, E. In
practice, this can result in a very conservative approximation.
Assuming instead that the error arises from a random distri-
bution allows us to develop a chance constrained formulation
for the controller, outlined in this section. We call this control
algorithm the Stochastic Adaptive Model Predictive Controller
(SAMPC). Here, the constraints on the state have to be satis-
fied with some probability 1−ζ, rather than in a deterministic
manner as in the RAMPC formulation.

A. Solution overview
Starting from the contract-driven control and estimation

framework of Sec. III, we denote the profiled delay-error
curve of the estimator by ∆. This curve ∆ consists of a
finite number of contract options (δ,Σ) that the estimator can
satisfy at run-time. Here, Σ ∈ Rn×n is the positive semi-
definite co-variance matrix associated with the now stochastic
state-estimation error e. It can be obtained through profiling
the performance of the estimator as outlined in Sec. VII. We
assume that the mean of the estimation errors is zero in all the
contracts, but the formulation and analysis that follows also
extends to distributions with non-zero means. δ is again the
computation time the estimator takes in a particular mode of
operation.

The SAMPC works in a manner similar to the RAMPC. At
each time step k, the controller receives a state estimate x̂k and
uses it to compute: a) the control signal uk, as well as b) the
contract (δk+1,Σk+1) ∈ ∆ that will be met by the estimator
at the following time step. Following this, at time step k + 1
the estimator gives a state estimate x̂k+1 with error ek+1 =
x̂k+1−xk+1 drawn from a distribution with co-variance Σk+1

and within time δk+1.
The cost function to be minimized is J =

∑M
k=0(l(xk, uk)+

απ(δk)) that combines the tracking error and input power
through the l term and the estimator power consumption
through the π terms. The SAMPC control algorithm then finds
a sequence of control signals uk and the contracts at each time
step (δk,Σk) ∈ ∆ such that J is minimized and the state xk
and input uk respect chance constraints of the form:

P ([xk, uk] ∈ X × U) ≥ 1− ζ ∀k (5)



Here, 0 < ζ ≤ 1 is a design parameter that decides the lower
bound on the constraint satisfaction probability. To achieve
these objectives, the Stochastic Adaptive Model Predictive
Controller (SAMPC) aims to solve the following optimiza-
tion (with horizon N ≥ 1), denoted by P̃∆(x̂k, δk,Σk, uk−1),
at each time step k:

J∗[0 : N ] = min
u,x,δ,Σ

∑N
j=0 (`(xk+j , uk+j) + απ(δk)) (6)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

P ([xk, uk] ∈ X × U) ≥ 1− ζ

Similar to the RAMPC, the SAMPC needs to find the
optimal length-N input sequence u = (u∗k, . . . , u

∗
k+N ), the cor-

responding state sequence x = (xk+1, . . . , xk+N+1), the delay
sequence δ = (δk, . . . , δk+N ) and associated error co-variance
sequence Σ = (Σk, . . . ,Σk+1) (such that (δk,Σk) ∈ ∆) which
minimize the the N-step cost J [0 : N ] and ensuring the chance
constraint of (5) is satisfied.

Consistent with regular MPC framework, once a solution
u is found, only the first input uk is applied to the system,
resulting in state xk+1. At the next time step, after receiving
the state estimate x̂k+1 from the estimator based on the
contract of step k, the SAMPC sets up the new optimization
P̃∆(x̂k+1, δk+1,Σk+1, uk+1−1) and solves it, repeating the
process at each subsequent time step.

Similar to RAMPC, the SAMPC only has access to the state
estimate, we extend the Stochastic MPC (SMPC) approach in
[30]. Namely, the problem is solved for the nominal dynamics
which assume zero process and observation noise (wk+j = 0)
and zero estimation error (x̂k+j = xk+j) over the prediction
horizon. Let x be the state of the system under nominal condi-
tions. To compensate for the use of nominal dynamics, SMPC
replaces the constraint of (5) by (xk+j , uk+j) ∈ Z̃j(Σk,Σ),
where Z̃j(Σk,Σ) ⊂ Z is Z = X ×U ‘shrunk’ by an amount
corresponding to Σ, as explained in the technical report [26].
Intuitively, by forcing (xk+j , uk−1+j) to lie in the reduced set
Z̃j(Σk,Σ), the stochastic estimation error and process noise
are guaranteed to be such that the state and the input respect
the joint chance constraint of (5).

The tractable optimization for a given (δ,Σ), denoted by
P̃(δ,Σ)(x̂k, δk,Σk, uk−1), is then

J∗(δ,Σ) = min
u,x

∑N
j=0 (`(xk+j , uk+j) + απ(δk)) (7)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

(xk+j , uk+j) ∈ Z̃j(Σk,Σ)

Construction of the shrunk constraint sets Z̃j is covered in
the technical report [26]. In practice, we solve the optimization
for each (δ,Σ) ∈ ∆ in parallel and pick the optimal contract
and the corresponding control signal as outlined in Algorithm
1 (solving J∗(δ,Σ) instead of J∗(δ,ε) in this case). The following
theorem (proven in [26]) states the guarantees of this control
algorithm:

Theorem 6.1: For any estimation mode (δ,Σ), if
P̃(δ,Σ)(x̂k, δk,Σk, uk−1) is feasible then the system (2) con-
trolled by the SAMPC and subjected to disturbances con-
strained by wk ∈ W satisfies, with probability at least 1−ζ, the
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Fig. 5. Illustration of the building blocks used to compose the Contract Object
Detector and their representation as real-time tasks. For a given (δ, ε) contract,
knob settings are chosen at run-time resulting in a schedule to execute these
sequential components, or tasks, to respect the contract.

state constraint xk ∈ X and control input constraint uk ∈ U ,
and the subsequent optimization P̃(δ,Σ)(x̂k+1, δk+1,Σk+1, uk)
are feasible with Probability 1.

Online, the SAMPC is executed in a manner similar to the
RAMPC as outlined in alg. 1. Note that having to solve the
optimization for each mode (alg. 1, line 5) does not add a
significant computational burden as these can be solved in
parallel. Section VIII shows these methods executing in real-
time at a high rate (20 Hz).

VII. CONTRACT BASED PERCEPTION ALGORITHMS

We presupposed, in Section III, the existence of an Esti-
mation Error vs Computation Delay curve ∆ for the state
estimator. The controller uses this curve at each discrete time
step to select the operating mode (δ, ε) for the estimator at
the next time step, as seen in Sec. V. In this section, we
show how this curve can be obtained for perception-based
algorithms through a general approach. We demonstrate this
on two applications (object detection and visual odometry) and
we show ways for the contract based estimation algorithm to
realize the points on the curve at runtime.

A. Profiling And Creating an Anytime Contract Based
Perception-and-Estimation Algorithm

In order to profile a contract estimator, we first need to
identify the distinct building blocks (or tasks) of the perception
algorithm. We then find the relevant parameters, or knobs, in
each task (e.g. maximum iterations in a loop) such that varying
them results in changes in the computation time (δ) and the
quality (ε) of the overall output of the estimation algorithm.

This procedure is tested through implementation on a
Computer Vision (CV)-based object detection tool chain, an
overview of which is shown in Fig. 5. This object recognition
tool chain is tasked with tracking an Object of Interest (OOI)
across the frames of a video stream. The first level of this is a
pixel classifier that assigns a probability for each pixel being a
part of the OOI. Applying this to given frame and thresholding
the probabilities for each pixel over some minimum probability



results in a binary image with the pixels of interest taking a
value 1, others being 0. The second level involves de-noising
the binary image, and then finding the Connected Components
(CC), i.e. collecting adjacent pixels of interest into (possibly
disconnected) objects. The third and final level is a shape
classifier that is run on the output of the connected components
to determine whether each object from it is of interest or not.

Our implementation uses a Gaussian Mixture Model
(GMM) for the pixel classifier and the shape classifier. The
knob here is the number of Gaussian distributions in the GMM
for the pixel classifier and the number of features for the shape
classifier. A smaller number of Gaussians or features (i.e. the
dimension of the Gaussian) will result in a faster, but possibly
inaccurate classifier. On the other hand, more Gaussians, or
features, can result in improved performance, but at the cost
of higher computation time. As is typically done, knob values
that result in an overfit are identified and rejected via cross-
validation during the training process.

The filtering for denoising the binary image, and the Con-
nected Components algorithm form the second level of the
object recognition tool chain and the knob here consists of
selecting either a 4-connected or 8-connected implementation.

In this implementation, the number of knob settings for
the object recognition tool chain is K = (#Gaussians for
pixel classifier × #neighbors for CC × #features for shape
classifier), and has a total of 3× 2× 2 = 12 values.

The trade-off curve for the entire toolchain is obtained by
profiling all 12 knob settings by running it on a data set
for profiling. Through this process we obtain, for each of
the different knob values: a) the output quality error ε, and
b) the computation times δ for the entire tool chain. This
offline gathering of information gives us the information to
be used at run-time in the co-design framework. The profiled
performance of the CV-based object recognition toolchain
considered here is shown in Fig. 6.

It should be noted that for each block of the tool chain,
the relation between knob value and runtime/quality of out-
put is not necessarily monotonic. Fig. 6 shows the mean
perception error2 and the 90th percentile execution time for
the different knob settings. While the trend is that perception
error decreases with increasing execution time, there are some
knob settings leading to both larger perception error and larger
execution time, which is seen in the non-monotonic behavior
seen in Fig. 6.
B. Run-time execution of the contract-driven perception algo-
rithm

After profiling the contract-driven estimator, we can use
the information at run-time to choose which knob settings are
needed to respect a given (δ, ε) contract. This is tantamount
to choosing altered versions of tasks and scheduling them
to execute one after the other in a pre-defined manner to
optimally perform the job of detecting an object of interest.
Fig. 5 shows the various tasks and their different versions for
every knob setting and the resulting task schedules.
C. Visual Odometry

An example of a vision based state estimation algorithm
is Semi-Direct Monocular Visual Odometry (SVO) [1], which

2Error is the distance between the true centroid and the estimated centroid
of the OOI
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Fig. 6. Profiled delay-error curve for the object detection tool chain run at
different parameter settings.

we will use in Sec. VIII to get state estimates for control
of the hexrotor robot. SVO detects corners in an image, and
tracks them across consecutive frames of a video feed in order
to localize the moving robot and generate a state estimate.
Since this state estimate is used for closed loop control of
the hexrotor, SVO has to run in real-time at a frame rate that
is fast enough for the purpose of controlling a flying robot.
The number of corners #C (as well as their quality) being
tracked from frame to frame affects the computation time of
the localization algorithm and the resulting quality of the state
estimate. In general, assuming that the camera is looking at
a feature rich environment, detecting and tracking a higher
number of corners results in better localization accuracy but
also takes larger computation time. For the profiling of SVO,
the number of corners #C is the only knob and is varied to
obtain an error-delay curve of the localization performance.

1) Profiling SVO performance: Fig. 7 outlines the profiling
process for SVO. We start with the hexrotor, running ROS,
flying (either manually or autonomously) in an environment
with a Vicon motion-capture system [31]. Throughout the
flight, the downward facing monocular camera captures frames
at the desired rate of 20 HZ. We also log the IMU data, as
well as the high-accuracy 6-DOF pose estimate generated by
the motion capture system, which we will use as the ground
truth for the hexrotor positions and velocities. We collected
data, recorded as rosbags, over 15 minutes of flights with
randomly chosen paths. These flights for data collection can
be performed either autonomously or with manual control, e.g.
in case an autonomous controller has not been formulated. In
our case, we collect data through a combination of both.

After the data collection, which is a one-time process, we
process the data offline with SVO running at the desired set-
tings of #C and compare state estimates from the SVO to the
high-accuracy ones from the vicon to get the state estimation
error profile. We also measure the SVO computation time for
each setting of #C, as well as the power consumed by the
Odroid-U3 computation platform [32], a stripped down version
of which is used on the hex-rotor. More details on the process
are in the online technical report [26].

Through this offline profiling process, we avoid having to
fly separate flights to get profiling information for every knob
setting (#C), and the result of this profiling is used in the
formulation of the controller and used at run-time by it to
generate contracts for the contract-driven estimator (Fig.3).



// time here

begin_ct = ros::Time::now();

const FrameHandlerBase::AddImageResult res = 

vo_->addImage(img, msg->header.stamp.toSec());

end_ct = ros::Time::now();

duration_ct = end_ct-begin_ct; 

time_taken = duration_ct.toNSec();

fprintf(logFile,"%lu \n",time_taken);

fflush(logFile);

// end

Hex-rotor flights

SVO Estimation error SVO power consumption

Er
ro

r-
de

la
y 

cu
rv

e 
fo

r S
VO

Odroid U3

Power meter

Re
co

rd
ed

 d
at

a 
   

(r
os

ba
gs

)

Offline profiling of SVO

Data collection

Pr
of

ile
d 

in
fo

rm
at

io
n

+ +

SVO computation time

// end 

Fig. 7. The profiling process to characterize the performance of SVO in terms of estimation error, computation time and power consumption. Sensor and
ground truth data is logged from flights of the hexrotor, and then played back and processed offline to generate the error-delay curve (shown in Fig. 8) for
SVO. The code snippet shows how little modification is needed to the SVO code base to be able to profile its timing characteristics. Through this offline
profiling process, we avoid the need of performing separate flights for each knob setting of SVO.
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Fig. 8. (Color online) Error-delay curve for the SVO algorithm running on
the Odroid-U3 with different settings of maximum number of features (#C)
to detect and track. The vertical line shows the cut-off for maximum delay
and the SVO settings that are allowable (up to #C = 200) for closed loop
control of a hexrotor at 20Hz. No value of #C is used above this as it results
in the delay approaching the sampling period of the controller.

2) The error-delay curve for SVO: Obtained from the
profiling process outlined above, Fig. 8 shows the error-
delay curve(s) of the localization error (in positions) of the
hexrotor with SVO running on an Odroid-U3. The curve,
obtained through data collected over multiple flights in a fixed
environment, shows the worst case error ε (over all flights and
all components of the 3D position, used in Sec. V), as well
the the standard deviation of the error for all components of
the 3D position (used in the stochastic control formulation of
Sec. VI) versus the computation time δ for varying number of
corners being tracked #C. δ is obtained by considering the
90th percentile of computation times, while ε is obtained by
computing the infinite norm of the 90th percentile error over
the 3 components (x, y, z) of the position. Note that as the
number of corners being tracked increases, the computation
time increases and the estimation error decreases as expected,
but only up to a point. At #C = 250, the estimation error
increases. We hypothesize this is due to the decreasing quality
of the corners in the environment now being tracked. This is
because if the scene is not particularly feature rich, and a
sizable fraction of the #C corners are of poor quality (i.e.,

unstable or hard to track across frames), and we can expect
the localization error to increase as the poor quality of the
corners detected adds noise to the visual odometry estimates.

The profiling approach outlined here is generally applicable
to most perception-based estimators. One limitation however
is that the framework applies only to the environment that
the profiling has been carried out in. Additionally in some
applications, data collection might be too costly.

VIII. CASE STUDY: FEEDBACK CONTROL OF A
HEX-ROTOR ROBOT

To evaluate the performance of our proposed methods,
we implemented the contract-driven estimator and control
scheme on a hex-rotor robot (fig. 7). It is equipped with
a downward facing camera, allowing us to use SVO for
localization. The on-board computation platform is an Odroid
U-3 [32] computer running Ubuntu as the operating system.
The computer also runs Robot Operating System (ROS) [33]
which is responsible for executing the estimation and control
algorithm at a fixed rate, and the communication between
them. More details are in the online technical report [26].

A. Experiment design

To compare the performance of the RAMPC and SAMPC
algorithms developed in this work with that of a MPC that does
not leverage co-design, we task the controllers with following
two pre-defined reference trajectories, shown in Fig. 9. The
reference trajectories are generated using the jerk minimizing
trajectory generator of [34].

1) The hourglass trajectory: This trajectory involves fly-
ing straight lines between the desired waypoints, as
shown in Fig. 9. In order to get the straight lines, the
waypoints are associated with desired velocities of zero
(in each axis). The duration of this trajectory is around
14s. The entire trajectory is flown at a constant height
of 1m. A video of the hex-rotor flying this trajectory
can be found at https://youtu.be/-ltJO2gVxWs

2) Spiral in x, y with sinusoidal variations in z: This
trajectory consists of smooth curves between waypoints,
with the waypoints such that in the x,y plane the trajec-
tory looks like a spiral converging towards the origin,
while in the z-axis it consists of sinusoidal variations



TABLE I
SVO MODES USED IN THE EXPERIMENTS

Mode #C δ [ms] ε [m] σ(ex) σ(ey) σ(ez) π(δ)[mW ]
0 50 24 0.054 0.021 0.033 0.038 778
1 100 30 0.049 0.019 0.027 0.033 862
2 150 34 0.041 0.019 0.024 0.030 870
3 200 38 0.035 0.018 0.022 0.024 951
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Fig. 9. The two reference trajectories, the spiral is in dashed red and the
hourglass is in solid black (color in online version). The figure on the right
shows the trajectories projected on the x,y plane. Note, the spiral starts on
the outside and ends inwards while the hourglass trajectory starts and ends at
(0, 0, 1).

along a reference height of 1m. The duration of this
trajectory is 17s. A video of the hex-rotor flying this
trajectory is at https://youtu.be/hmTRxrq4NJg

These trajectories are flown with: a) the baseline, a Robust
MPC formulation that does not leverage the co-design of
computation and control, with all four chosen modes of SVO
used for the state feedback, b) the RAMPC algorithm with
varying values of α, the weight for the computation power in
the optimization, c) the SAMPC (with ζ = 0.82) with varying
values of α. Each trajectory is flown twice for each one of
these settings to get a comparison of control performance and
computation energy consumption. This lead to a total of 56
flights to gather the data presented in this case study.

B. Experimental Results
To measure the performance of the controllers in a stan-

dardized manner, we used the following measure of control
performance:

Jtrue =
1

Tmax

Tmax/h∑
k=0

(xk − xref
k )TQ(xk − xref

k ) + uTkRuk (8)

Here, xref is the desired trajectory, and Q and R are the
matrices used in the cost of MPC/RAMPC/SAMPC, h is the
sampling time (50ms) and Tmax is the duration of the particular
trajectory flown. Jtrue can be accurately evaluated as we have
access to the true state, xk, from the Vicon system.

1) Comparison to the baseline: Fig. 10 shows the control
performance and the SVO energy consumption for the hour-
glass trajectory for the baseline RMPC, RAMPC, and SAMPC
for different settings. The SAMPC and RAMPC result in
lower (average across flights) values of Jtrue than the baseline
controller, i.e. better control performance. As the value of α
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Fig. 10. Performance, hourglass trajectory. The vertical axis has the average
control performance (8) over the flights for the labeled settings,with lower
values implying better control performance. The horizontal axis shows the
computation power (in Joules) consumed by SVO to perform the state estima-
tion task. The figure shows how our methods (RAMPC/SAMPC) leveraging
the co-design have both better control performance while consuming less
computation power than the baseline method.

260 280 300 320 340
Computation Energy for perception based estimator (J)

1.55

1.6

1.65

1.7

1.75

1.8

1.85
J tru

e RAMPC
SAMPC
Baseline

Mode 0
Mode 1

Mode 2

Mode 3

α=0

α=0.001

α=0.01
α=0.1

α=1

Fig. 11. Performance, spiral trajectory. The vertical axis has the average
control performance (8) over the flights for the labeled settings,with lower
values implying better control performance. The horizontal axis shows the
computation power (in Joules) consumed by SVO to perform the state
estimation task. Similar to the case for the hourglass trajectory, our methods
outperform the baseline.

increases, the power consumption decreases and the control
performance degrades for the RAMPC and SAMPC. This is
expected as α is the weight for the computation power in the
overall optimization cost of (3) (and (6)) and increasing it
would make computation power more important relative to
the control performance. Fig. 11 shows a similar behavior
for the spiral trajectory. The notable exception is in the
baseline performance, where the most accurate mode (mode
3) of SVO does not result in the best control performance of
the fixed mode RMPC controller. This is possibly because
the spiral trajectory is more aggressive than the hourglass
trajectory, which involves stopping at each corner waypoint
of the trajectory, and spending time in mode 3 comes with
a computation delay that degrades the control performance
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Fig. 12. (Color online) Reference positions (dashed red) and actual positions
(blue) of the hex-rotor flying the hourglass trajectory while being controlled
by the SAMPC (α = 0).

TABLE II
FRACTION OF TIME SPENT IN MODES: HOURGLASS TRAJECTORY, RAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.398 0.008 0.024 0.570

α = 0.001 0.523 0.004 0.024 0.440
α = 0.01 0.557 0.000 0.067 0.374
α = 0.1 0.820 0.000 0.055 0.123
α = 1 1.000 0.000 0.000 0.000

despite the increased accuracy of the state estimate. For either
trajectory, SAMPC and RAMPC give a better control perfor-
mance than the baseline for the corresponding computation
energy consumption. For both cases, the control performance
of SAMPC and RAMPC are close to each other, with the
SAMPC performing slightly better for the spiral trajectory.

Summary: Across both the trajectories, the best case con-
trol performance of our methods results in about a 10%
improvement compared to that of the baseline. To achieve
this performance, our methods result in SVO using about
5 − 6% less computation energy compared to the baseline
(at the setting resulting in best control performance). This
clearly demonstrates the benefit of the co-design between the
perception-based estimation and the control algorithms.

2) Impact of the weight for computation power (α): As
α takes on a high value, the control performance of RAMPC
and SAMPC for the hourglass trajectory approaches that of the
baseline RAMPC with SVO mode fixed to 0. This is backed
up the observation of tables II, III which show that for α = 1,
the RAMPC and SAMPC select mode 0, the low-power but
high estimation error mode, of SVO all the time. The tables
II, III show the fraction of time spent in each mode of SVO
as α changes. Note that as α, the weight for the computation
power, increases the time spent in the low power mode 0 also
increases while the time spent in the more accurate but higher
power modes accordingly decreases. Similar behavior is noted
for the spiral trajectory, and tables IV and V show the fraction
of time spent in the different SVO modes as α changes for
RAMPC and SAMPC flying the spiral trajectory respectively.

3) Snapshots of the control performance of RAMPC and
SAMPC: Fig. 12 shows the reference and actual positions of
the hex-rotor (in x,y and z co-ordinates) as functions of time
for the hourglass trajectory controlled by the SAMPC (α = 0).
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Fig. 13. (Color online) Reference positions (dashed red) and actual positions
(blue) of the hex-rotor flying the spiral trajectory while being controlled by
the RAMPC (α = 0.1).
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Fig. 14. SVO Mode and control cost (per time-step) over time for the spiral
trajectory flown with SAMPC at α = 0.001.

Note the near perfect tracking in x and y. The small dip in
the height (z co-ordinate) is due to a combination of model
error (due to inaccuracy of the mass) as well as the effect
of linearization around hover. Fig. 13 shows the reference
and actual positions versus time for the RAMPC (α = 0.1)
flying the spiral trajectory, showing similarly good tracking
performance as in the hourglass trajectory. Fig. 14 shows a
snapshot of the SVO mode and tracking cost over time for the
spiral trajectory.

IX. CONCLUSION

In this paper we presented a contract-driven methodology
for co-design of estimation and control for autonomous sys-

TABLE III
FRACTION OF TIME SPENT IN MODES: HOURGLASS TRAJECTORY, SAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.374 0.000 0.004 0.621

α = 0.001 0.514 0.016 0.051 0.418
α = 0.01 0.617 0.000 0.032 0.351
α = 0.1 0.793 0.000 0.076 0.131
α = 1 1.000 0.000 0.000 0.000



TABLE IV
FRACTION OF TIME SPENT IN MODES: SPIRAL TRAJECTORY, RAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.381 0.015 0.015 0.589

α = 0.001 0.422 0.012 0.018 0.548
α = 0.01 0.504 0.000 0.041 0.455
α = 0.1 0.680 0.000 0.082 0.238
α = 1 0.995 0.000 0.015 0.000

TABLE V
FRACTION OF TIME SPENT IN MODES: SPIRAL TRAJECTORY, SAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.396 0.003 0.018 0.584

α = 0.001 0.434 0.009 0.018 0.540
α = 0.01 0.531 0.000 0.038 0.431
α = 0.1 0.695 0.000 0.073 0.232
α = 1 0.971 0.000 0.029 0.000

tems. The basic idea is that the control algorithm requests a
delay and estimation error (δ, ε) contract that the perception-
and-estimation algorithm realizes. The control algorithm we
designed aims to set time-varying contracts to maximise a
performance function while respecting feasibility constraints
and stability under the time varying execution delay and
estimation error from the estimator. We also illustrate how
the contract-driven perception-and-estimation algorithm is de-
signed offline and used at run-time to best meet the (δ, ε)
contracts set for it. Through a case study on a flying hexrotor,
we showed the applicability of our scheme to a real-time
closed loop system. The experimental results show the good
performance of our scheme and how it outperforms regular
Model Predictive Control which does not leverage co-design.
A key result showed how our closed loop solution is more
energy efficient than MPC while achieving better tracking
performance. A focus of ongoing research is to overcome the
necessity of the contracts always being met by the estimator
as well as on developing an automated tool chain to profile
perception algorithms commonly used in autonomous systems.
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