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Abstract— Real-time navigation of autonomous vehicles re-
quires the processing of a large amount of sensor data by the
perception algorithms onboard the vehicle, like object detection
and localization. To meet the driving performance and safety
requirements, these algorithms require the hardware to be over-
engineered to always operate for the worst-case. This leads to
excessive power consumption by the computation platform. In
this paper, we study how platform-level optimizations affect
the computation throughput and power, and how to use this
trade-off to save computation power without overly degrading
throughput and control performance. The approach uses an
offline profiling stage of the perception algorithm, which gives
us Throughput versus Power curves for various processor
frequencies and various scheduling of the perception code on
CPU and GPU. At runtime, we combine power and throughput
into one objective function, and design a supervisor what
will determine the frequency and CPU/GPU allocation to
maximize the objective. We illustrate our approach on a scaled-
down autonomous car which uses Vanishing Point navigation.
Experimental results demonstrate that we can achieve an energy
savings of upto 20% while degrading control performance by
less than 1%.

I. MOTIVATION

Real-time control of autonomous vehicles requires the
processing of a large amount of sensor data, which is used
by the vehicle to determine its position in the world and
to calculate its next move. Examples include data from
cameras, LIDAR, radars and ultrasound radars, and possibly
information communicated by other vehicles or the road
infrastructure. Google’s autonomous vehicles generate over
750MB/s of sensor data [1] which must be processed by
the perception pipeline fast enough with run-to-completion
algorithms. To guarantee safety and meet the driving per-
formance requirements, such run-to-completion algorithms
require the hardware to be over-engineered for the worst-
case: i.e., it always executes the software as if the worst-case
conditions hold. This leads to a requirement of over 4KW
in computational power. This is a significant drain on the
vehicle’s lithium-ion battery capacity, which is 24kWh in a
Nissan Leaf for example, and a significant percentage of the
average power drawn by the drive motors, which is 30kW
in a small electric vehicle modeled in ADVISOR [2] going
through the Urban Dynamometer Drive Cycle.
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The usage of anytime perception algorithms allows us
to perform a trade-off between the computation time of
the algorithms, their power consumption, and the quality of
their output. An anytime algorithm has a pre-defined set of
interruption times. The earlier the algorithm is interrupted,
the less power it consumes, but the worse is the quality of
its output in general. On the other hand, that quality may
be sufficient for the control algorithm to achieve its goal in
the current circumstances. For example, in this paper, the
control objective is to follow the center of a driving lane,
and control performance is measured by the deviation from
that center. At slow speeds, poor quality of position estimate
may be tolerated since it won’t lead to excessive deviations
from the center. Therefore, the perception algorithm might be
interrupted early thus saving on computation power, provided
it gives a good enough estimate of position.

In [3] we proposed a way in which a standard perception
algorithm can be turned into an anytime algorithm via off-
line profiling, and thus can offer a time/power/quality trade-
off. We also designed a model predictive controller than can
make use of the trade-off offered by the anytime perception
algorithm. To achieve the time/power/quality trade-off, we
produced multiple versions of the perception algorithm.
Broadly speaking, a version that ran for longer produced
a higher quality output.

In this work, we turn our attention to the time/power
trade-off for a fixed quality of output and how it can be
achieved using platform-level optimizations. Even when the
output quality is fixed, the computation delay (equivalently,
throughput) is known to affect control performance. Thus
in this paper, we study how platform-level optimizations
affect the computation throughout and power, and how to
use this trade-off to save computation power without overly
degrading throughput.

Note that the study of how computation delay affects
control performance, and the design of anytime perception
and control algorithms for power saving, are not specific to
autonomous vehicles. Other control systems can benefit from
these trade-offs, especially power-limited consumer robots.
In this paper, we illustrate our approach on an autonomous
car 1/10th the size of a regular car (Fig. 2), which uses
Vanishing Point navigation [4]. The setup, including the
navigation algorithm, are presented in Section II. Section III
describes the offline profiling of Vanishing Point, which gives
us Throughput versus Power curves for various processor
frequencies and various scheduling of the navigation code
on CPU and GPU. In Section III-C we combine power
and throughput into one objective function, and design a
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Fig. 1. Two stage approach.

Fig. 2. Autonomous car (1/10th scale) developed using a Traxxas chassis.
The car is capable of speeds of up to 40 miles per hour.

supervisor what will determine the frequency and CPU/GPU
allocation to maximize the objective. Section IV presents
experimental results that demonstrate the effect of the trade-
off on control performance.

II. PROBLEM SETUP

In this section, we present the setup in which we study
the throughput/power trade-off and its effect on control
performance. Specifically, we developed a 1/10th scale au-
tonomous car. The car runs the Vanishing Point algorithm
[4], [5] and a feedback controller to navigate a corridor and
stay in its middle. The computation platform on board the
car is a Nvidia Jetson, which has a quad-core ARM CPU
and a 192 core Nvidia Tegra GPU.

A. Vanishing point for corridor navigation

The Vanishing Point algorithm (VP) [4] has been used
extensively in indoor settings for navigating corridors au-
tonomously [5], [6] and for outdoor lane detection [7].
For each image frame, the algorithm outputs the horizontal
distances xv of the vanishing point and xm of the middle
point from the center of the frame. The vanishing point
is the intersection point of any two parallel lines in the
environment, and the middle point indicates the center of
the corridor. See Fig. 3. These two measurements are used
by the feedback controller to center the robot in the corridor
and align it with the walls. It does so by driving the abscissa

Fig. 3. Vanishing point algorithm output overlaid on the corridor image.
The green (upper) dot shows the vanishing point while the red (lower) dot
shows the middle point. These are computed from the intersection of the
detected corridor guidelines. (Color in online version)

xv and xm to zero using the following feedback law for the
steering rate ω [5]:

ω =
k1

k1k3 + xmxv
(−k2v

k1
xv − kpxm) (1)

where kp, k1, k2, k3 are parameters, and the car dynamics are
modeled as follows:

ẋ = v sin θ, ẏ = v cos θ, θ̇ = ω (2)

where x is the car’s horizontal position (referenced to an
origin in the middle of the corridor), y is its vertical position,
and θ is the steering angle. The car’s velocity v is fixed. The
VP computation time appears as a delay to this controller.
In general, less delay means better control performance but
larger computation power. Our goal is to achieve a trade-off
where the control performance is acceptable (robot drives
along the middle of the corridor) while the computation
energy is minimized.

We define throughput as the update rate of VP, which is
the inverse of its execution time. The faster VP executes,
the better the control performance of the closed loop system
since the controller sees a small delay. Hence, throughput
acts as a proxy for control performance. In most imple-
mentations, the perception algorithm is always run at its
maximum possible throughput to subject the controller to the
smallest possible delays. This neglects the power consumed
by the computation platform. In many autonomous systems,
power draw from the computation platform is a significant
concern; e.g., in our robot, the Jetson and drive motors are
powered by separate energy sources. So while we would
want to subject the controller to a small delay (operate
the perception algorithm at a high throughput), we would
also like to minimize the power draw from the computation
platform in order to maximize the operating time of the
system.



B. Exploiting hardware knobs to trade-off power and
throughput

In order to trade-off computation power and throughput of
the perception algorithm, we rely on the insight that the GPU
can execute some tasks faster than a CPU, albeit at a greater
power cost. Also, executing a task at a higher frequency
(on either CPU or GPU) increases throughput, but again at a
greater power cost. Thus, in our setup, we found that running
VP on the CPU alone resulted in a low throughput (about
8Hz) and low power consumption (about 5W). On the other
hand running it on the GPU allowed us to get a throughput
in excess of 20Hz, but resulted in a power consumption of
over 7W. In this section, we describe how to divide VP into
tasks and profile VP’s performance as we vary the execution
frequencies of these tasks and their scheduling on either CPU
or GPU. These tasks are (see Fig. 4):

• Blur: A Gaussian blur is applied on the image for de-
noising.

• Edge detection: We use the Canny Edge detector to find
edges in the image.

• Hough Transform: used to detect straight lines in the
image.

• RANSAC: used to select the parallel straight lines that
best describe the sides of the corridor. These lines
intersect in the image plane at the Vanishing Point.

We can schedule any of these tasks to be run on either the
CPU or the GPU as shown in Fig. 4. Let σ ∈ Σ denote a
given schedule, where

Σ = {CCC, CCG, CGC, CGG, GCC, GCG, GGC, GGG}

For example, schedule σ = CCG means that the Blur task
is done on the CPU, the Edge detection is done on the CPU
and the Hough Transform is done the GPU, and so on. Since
RANSAC took a negligible amount of time compared to the
other tasks, we always execute it on the CPU. In addition, we
can change the CPU and GPU frequencies during run-time,
resulting in different execution times and power consumption
for the Jetson. Let Fc and Fg be the frequencies of the CPU
and the GPU respectively.

The hardware level knobs to trade-off throughput and
computation power for an execution of the vanishing point
algorithm are now σ, Fc and Fg . The throughput and
computation power, functions of all three knobs, are denoted
by T (σ, Fc, Fg) and P (σ, Fc, Fg) respectively.

C. The Mode Selection problem

The problem we solve is that of picking the best operating
mode (σ, Fc and Fg) for the perception algorithm VP in order
to minimize computation power P (σ, Fc, Fg) without overly
affecting the closed loop control performance of the system,
quantified by the throughput T (σ, Fc, Fg).

III. TWO STAGE OPTIMIZATION

To solve the Mode Selection problem (Section II-C),
we propose a two stage solution. The first stage is offline
(Fig. 1 left): in it, we thoroughly profile the perception

Blur Canny Hough RANSACImage Error

GPU CPU
1.2 GHz 2.4 GHz

Fig. 4. The vanishing point algorithm with components running on
either CPU or GPU at various frequencies, resulting in different power
consumptions and execution times.

algorithm’s throughput T (σ, Fc, Fg) and power consumption
P (σ, Fc, Fg) for various values of the hardware knobs σ,
Fc and Fg . The second stage is at runtime (Fig. 1 right):
based on the current control error, a supervisor chooses a
weighting of throughput and power; intuitively, the larger the
error, the more weight throughput receives, and vice-versa.
The supervisor then picks the task schedule σ and CPU-
GPU frequencies Fc, Fg that best maximize the weighted
combination of throughput and power. A high-level view of
this approach is shown in Fig. 1. We next detail each stage.

A. Offline profiling of performance and power consumption
of the perception algorithm

For the Vanishing Point (VP) algorithm, the first stage of
our method is profiling the timing and power consumption
of the computation. Namely, we vary the schedule and
frequency knobs described in Section II-B. For each value
of the knobs, we run VP on a video sequence previously
acquired by the robot while navigating a corridor, and log
power and execution time. Since for an algorithm like VP
there is no well-defined notion of output quality, we use the
update rate as a performance measure, since faster updates
mean that the car controller has less delay, resulting in better
control performance.

Figure 5 shows the profiling results for the throughput
of VP at different CPU-GPU allocations of the 3 tasks
and different frequencies of the CPU and the GPU. Note,
the CPU can be clocked upto 2.32 GHz (on all 4 cores),
while the GPU can be clocked upto 0.852 GHz. We select 6
operating frequencies evenly spaced between the minimum
and maximum CPU and GPU frequencies.

Figure 6 shows the profiling of average power consumed
by VP over all frames in the video for the same combinations
of the knobs.

B. Feedback driven online scheduling and mode selection

The profiling results indicate that the knobs σ, Fc and Fg
allow us to trade-off throughput for power, as expected. At
runtime, we must decide which knob setting to choose at
every time step. This is done by maximizing the following
objective function at every time step t:
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Fig. 5. VP throughput. Each surface corresponds to a particular schedule
(see legend). For a given schedule, different CPU and GPU frequencies
yields a different throughput. (Color in online version).
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Fig. 6. Mean power consumed by the Jetson. Each surface corresponds to
a particular schedule (see legend). For a given schedule, different CPU and
GPU frequencies yields a different power. (Color in online version).

max
σ,Fc,Fg

α(xm, xv)T̄(σ, Fc, Fg) +
1− α(xm, xv)

E[P̄](σ, Fc, Fg)
(3)

Recall that T̄(σ, Fc, Fg) is the normalized throughput
of VP, and E[P̄](σ, Fc, Fg) is the mean normalized power
consumed by the computation platform. The parameter
α(xm, xv) ∈ [0, 1] determines how much to weigh through-
put versus performance at every time step. It is computed
as a function of the abscissa xm, xv: recall that non-zero
values of either indicates deviation from the center line of
the corridor (Section II-A). Since xm, xv are time-varying,
α is also time-varying. As xm or xv deviates further away
from 0, α increases to more heavily weigh throughput,
thus skewing the optimization towards larger throughput and
better control performance. This translates as different CPU-
GPU schedules and different frequencies. In this paper, we
use three different functions for α, given d > 0:

α = f1(xv(t)) =


0.001, if xv(t) ∈ [−d, d]
xv(t) + d, if xv(t) < −d
xv(t)− d, if xv(t) > d

(4)

α = f2(xm(t)) =


0.001, if xm(t) ∈ [−d, d]
xm(t) + d, if xm(t) < −d
xm(t)− d, if xm(t) > d

(5)

α = f3(xm(t), xv(t))

{
0.001, if |xm(t)|+ |xv(t)| < d

|xm(t)|+ |xv(t)| − d, otherwise
(6)

C. Feedback control of vehicle

The online control procedure performs the following cal-
culations at ever time step t (see Fig. 1):

1) Obtain xm, xv from VP, and provide it to both Super-
visor and Controller.

2) The Supervisor:
a) Computes α(xm, xv)
b) For each value of (σ, Fc, Fg), computes the ob-

jective value (3). P̄ and E[P̄] are obtained from
the offline profiling stage.

c) Selects the value of (σ∗, F ∗
c , F

∗
g ) that maximizes

the objective. This is provided to VP.
3) The Controller computes the input value as described

in Section II-A.
4) VP executes with the CPU/GPU schedule σ∗ and

frequencies F ∗
c , F

∗
g . Goto 1.

IV. EXPERIMENTS

We simulate the system shown in Fig. 1, where the car
is modeled by the dynamics of Eq. (2), the controller is
given by Eq. (1), and the supervisor optimizes Eq. 3 as
explained in Section III-C. The controller experiences a
delay when receiving update values of xm and xv . This is
the computation delay computed offline during the profiling
stage. The simulation is repeated three times: once for each
choice of α from Eqs. (4), (5) and (6). We also simulate two
more scenarios: one where the schedule and frequencies are
fixed at the highest throughput (highest power) values, and
one where they are fixed at the lowest throughput (lowest
power) values.

We initialize the robot aligned to the corridor θ = 0 but
off from the center by 0.25m, i.e. x = 0.25. The controller
attempts to bring the robot to the middle of the corridor and
align it with the corridor while the supervisor decides the
hardware operating mode (σ, Fc, Fg) as per Sec. III-B. At
10 seconds, we apply a steering disturbance to the system,
which is a pulse of magnitude 3 degrees per second and a
duration of 2 seconds. The controller again tries to recover
from this disturbance while the supervisor picks the best
operating mode for the perception algorithm.

Figs. 8 and 9 show the selected CPU and GPU frequency
versus time respectively. Fig. 11 show the computation power
vs time, while Fig. 10 shows the schedule σ of CPU-GPU
allocation for tasks. Fig. 7 shows the trajectory of x versus
time. Note that only the trajectory of x for the lowest power,
or highest delay mode differs enough from the others so as
to be different visually in this plot.
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To better understand these figures, let us go through 5
checkpoints (a, b,c, d and e) in time common to Figs. 7, 8,
9, 10 ,11. At checkpoint a the controller starts to stabilize
x initial displacement of 0.25m. At this time, both xv and
xm have high magnitudes, implying α takes a high value
(close to 1) for all fi, i = 1, 2, 3. Due to this, Fig. 10 shows
that σ becomes CCG and Figs. 8 and 9 show that CPU and
GPU frequencies are high, this implies the vanishing point
algorithm is near its highest throughput. Correspondingly,
Fig. 11 shows that the computation power is also high.

At checkpoint b x has a small magnitude and is near
settling the middle of the corridor. Because of this, both xv
and xm have smaller magnitudes, and so α is small and the
requested CPU and GPU frequencies start to decrease. σ is
still CCG for all supervisory functions except f2, but settles
to CCC for all 3 as x settles to zero shortly after checkpoint
b.

Checkpoints c, d, and e show how the system responds
to a pulse-like disturbance in the steering (lasting from 10s
to 12s). It is interesting to see how the different supervisory
functions fi result in different switching between schedules
CCC and CCG and different CPU and GPU frequencies.

Time (s)
0 5 10 15 20

G
P

U
 F

re
qu

en
cy

 (
G

H
z)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lowest power
Highest power
f1
f2
f3

a
b

c d

e

Fig. 9. GPU Frequency selected versus time. Note, for the lowest power
mode, the GPU is at its second lowest frequency and not the lowest (while
the schedule is σ = CCC) because of noise in power measurements.
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Fig. 10. CPU/GPU schedule for VP. Note that the schedule switches
between only two allocations: CCG which has the best throughput with
a relatively low power consumption, and CCC has the lowest power
consumption (See Section III-A)

The closed loop control performance can be measured over
a simulation time of T seconds as L =

∫ T
0
|x(t)|dt, and the

expected energy consumed is calculated as the sum of powers
over T seconds. A summary of the control performance
and computation energy consumed for these five cases is
shown in table I. It is clear that operating with the highest
power/lowest delay mode for the vanishing point results in
the best control performance, but the computation energy is
high. On the other hand, lowest power/highest delay mode
results predictably in low power consumption and the worst
control performance. With out two stage approach, control
performance is very similar (less than 1% degradation) to
the highest power mode, while the computation energy is
significantly (about 20%) lower. This clearly shows the
benefit of our approach.

V. RELATED WORK

The focus of perception based algorithm for autonomous
systems has been on computation speed and performance
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TABLE I
CONTROL PERFORMANCE AND COMPUTATION ENERGY

Supervisor Control perf.(L) Energy(J)
Lowest power (mode fixed) 0.3245 106.12
Highest power (mode fixed) 0.3010 140.13

f1(xv) 0.3025 113.16
f2(xm) 0.3023 112.39

f3(xv , xm) 0.3018 113.07

with very little regard for power consumption, e.g. [8], [9].
In particular, computationally powerful but expensive GPUs
are now becoming popular for implementing perception
algorithms for autonomous navigation [9]. In this paper, our
work focuses on trade-offs on performance of the perception
algorithm to minimize computation power based on the
feedback used for closed-loop control of the system. Unlike
most implementations that rely on the GPU, we do not
always schedule tasks to run on the GPU and vary GPU and
CPU frequency at run-time in order to be power efficient
without overly affecting control performance.

The effect of increasing computation time of a task on
performance has been explored in [10] by using a resource
allocation algorithm similar to QRAM [11]. Our work differs
from this as we vary the resource allocation and execution
time for the tasks that compose the perception algorithm
at run-time while considering control performance and we
also do not drop any tasks in order to meet the control
requirements.

In the field of computer architecture approximate comput-
ing approaches [12], [13], [14] have been studied, seeking
time or energy savings by performing a computation ap-
proximately instead of precisely. While our approach and
approximate computing share a high-level goal, approximate
computing lacks a feedback mechanism to balance compu-
tation and resources dynamically. Additionally the time and
energy scale that our approach works at is much higher than
what approximate computing looks at.

VI. CONCLUSIONS

In this paper, we introduce a two stage approach for
hardware level optimization in order to trade-off throughput

and power consumption of a perception algorithm. We use
the vanishing point algorithm based corridor navigation as
a running case study throughout the paper and simulate
the closed loop performance based on the experimentally
profiled vanishing point performance from a 1/10th scale
autonomous car. Through the simulations, we show that our
run-time optimization for the trade-off results in negligible
degradation of control performance (≤ 1%) while signifi-
cantly reducing computation energy (around 20%). In this
work, one drawback is that the control algorithm itself is
unaware of the trade-offs, unlike our work in [3]. Future
work, in addition to developing a control algorithm that is
aware of the trade-offs, will also focus on experimentally
verifying the performance our method by closing the loop
on the 1/10th scale autonomous car and moving beyond
simulations.
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